목록TensorFlow (5)
Allen's 데이터 맛집
시계열 데이터를 위한 LSTM 모델
시계열 데이터를 다루기 위한 LSTM(Long Short-Term Memory) 모델에 대해 알아보겠습니다. LSTM 모델 이란? LSTM은 순환 신경망(RNN)의 한 종류로, 시퀀스 형태의 데이터를 처리하는 데 특화되어 있습니다. 시계열 데이터나 자연어 처리 등 다양한 분야에서 활용되며, 특히 시간에 따른 패턴을 학습하여 예측하는 데 많이 사용됩니다. LSTM 모델의 장단점 장점: 1. 장기 의존성 학습: 장기적인 의존성을 학습할 수 있어 긴 시계열 데이터에 대해 효과적으로 패턴을 학습합니다. 2. 기억 셀: LSTM의 핵심 메커니즘인 기억 셀을 통해 중요한 정보를 오랫동안 기억하고 활용할 수 있습니다. 3. 다양한 활용성: 다양한 시계열 데이터 분석 및 예측에 적용 가능하며, 자연어 처리 등 다양한 ..
Machine Learning/머신러닝
2024. 2. 18. 19:23