목록decision-tree (2)
Allen's 데이터 맛집

"데이터의 미로, Decision Tree 분류 모델" 이번에는 데이터 분류에 활용되는 'Decision Tree(의사 결정 트리)' 분류 모델을 알아보겠습니다. 이 모델은 데이터의 규칙을 분석하여 예측을 수행하는 직관적이고 강력한 도구입니다. Decision Tree 분류 모델은 데이터를 분기점과 결정 영역으로 나누어 가며 예측을 수행합니다. 각 분기점은 특정 특성의 값에 따라 데이터를 서로 다른 클래스로 할당하게 됩니다. 이미지출처:https://dlsdn73.tistory.com/655 간단한 파이썬 코드 예제: from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model..

"데이터의 숨은 규칙, Decision Tree 모델" 데이터 분석과 머신러닝을 통해 현실을 해석하고 예측하는 데 도움이 되는 다양한 알고리즘 중 하나인 'Decision Tree(의사 결정 트리)' 모델을 소개하려 합니다. 이 모델은 마치 의사 결정을 내리는 과정과 유사하게 데이터의 규칙을 분석하여 판단하는 간단하면서도 강력한 도구입니다. 이미지 출처 : https://algodaily.com/lessons/decision-trees-basics Decision Tree는 데이터의 특성과 결과 사이에 내재된 패턴을 찾아내기 위해 사용됩니다. 이 모델은 나무 구조와 비슷한 형태로, 데이터를 여러 개의 '분기점'과 '리프(Leaf)'로 나누어 각각의 분기점에서 최적의 결정을 내리게 됩니다. 이는 마치 미로..