목록arima (1)
Allen's 데이터 맛집
ARIMA 모델
ARIMA(AutoRegressive Integrated Moving Average) 모델은 시계열 데이터를 분석하고 예측하는 데 사용되는 통계적 모델 중 하나입니다. ARIMA 모델은 시계열 데이터의 자기상관 구조를 나타내기 위해 자기회귀(AR) 및 이동평균(MA) 구성 요소를 사용하며, 시간에 따른 추세나 계절성을 처리하기 위해 차분(Integrated)을 사용합니다. 장점 1. 간단하고 유연한 모델: ARIMA 모델은 비교적 간단한 모델이지만, 시계열 데이터의 추세, 계절성, 자기상관 등을 효과적으로 모델링할 수 있습니다. 2. 시계열 데이터의 추세를 고려: ARIMA 모델은 차분 과정을 통해 시계열 데이터의 추세를 고려할 수 있어, 추세가 있는 데이터에 대해서도 잘 작동합니다. 3. 많은 온라인 ..
Machine Learning/머신러닝
2024. 2. 17. 01:06