목록오버피팅 (1)
Allen's 데이터 맛집

오버피팅이란? 오버피팅은 모델이 훈련 데이터에 너무 맞춰져서 실제 데이터에서는 성능이 떨어지는 현상을 의미합니다. 마치 시험을 외우는 것과 비슷하죠. 중요한 것은 모델이 데이터 패턴을 너무 따라 하면서 유연성을 잃는 것을 방지하는 방법들을 알아보는 것입니다. 머신러닝 진행 시 주의해야되는 가장 중요한 문제 중 하나로써 아래의 강아지 집처럼 너무 잘 맞아떨어진다는 것입니다 해결 방법 방법으로는 아래의 방법들이 있습니다 - Cross Validation - Regularization - Remove Features - Ensembling
Machine Learning/머신러닝
2023. 8. 26. 21:26